Cambridge IGCSE[™] | CANDIDATE
NAME | | | | | | |-------------------|--|--|---------------------|--|--| | CENTRE
NUMBER | | | CANDIDATE
NUMBER | | | **COMBINED SCIENCE** 0653/51 Paper 5 Practical Test October/November 2022 1 hour 15 minutes You must answer on the question paper. You will need: The materials and apparatus listed in the confidential instructions #### **INSTRUCTIONS** - Answer all questions. - Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. - Write your name, centre number and candidate number in the boxes at the top of the page. - Write your answer to each question in the space provided. - Do not use an erasable pen or correction fluid. - Do not write on any bar codes. - You may use a calculator. - You should show all your working and use appropriate units. ## **INFORMATION** - The total mark for this paper is 40. - The number of marks for each question or part question is shown in brackets []. - Notes for use in qualitative analysis are provided in the question paper. | For Examiner's Use | | |--------------------|--| | 1 | | | 2 | | | 3 | | | 4 | | | Total | | This document has 16 pages. Any blank pages are indicated. 1 You are going to investigate the effect of temperature on the rate of respiration in yeast cells. When yeast cells respire, they produce carbon dioxide gas. (a) You are provided with a suspension of respiring yeast cells in a beaker labelled **yeast**. #### **Procedure** - **step 1** Half-fill the empty beaker labelled **warm water** with warm water. - (i) Record the temperature of the warm water in the beaker. - **step 2** Stir the yeast suspension. - **step 3** Use a syringe to add 10 cm³ of yeast suspension to a clean boiling tube (large test-tube). - **step 4** Place the boiling tube of yeast suspension in the beaker of warm water. - **step 5** Fig. 1.1 shows the apparatus. Make sure the syringe barrel contains water and is fully submerged in the container of water. Fig. 1.1 - **step 6** Keep the syringe barrel fully submerged in the container of water and place the bung in the boiling tube of yeast suspension. - **step 7** Measure the **initial** volume of gas in the syringe barrel. - (ii) Record in Table 1.1 this value to the nearest 0.5 cm³. [1] - **step 8** Start the stop-clock and wait for 5 minutes. Continue with **(b)** while you are waiting. - **step 9** After 5 minutes, measure the **final** volume of gas in the syringe barrel. - (iii) Record in Table 1.1 this value to the nearest 0.5 cm³. [1] #### Table 1.1 | beaker | initial volume of gas
/cm ³ | final volume of gas
/cm ³ | volume of gas collected / cm ³ | |------------|---|---|---| | warm water | | | | | cold water | | | | | ste | p 10 | Remove the bung from the boiling tube of yeast suspension. | | |------|---|---|-----| | ste | p 11 | Repeat step 2 to step 9 using the beaker of cold water. | | | (iv) | Record | in Table 1.1 the initial and final volumes of gas for cold water. | [1] | | (v) | Calculate the volume of gas collected in each experiment. | | | | | Use the | e equation shown. | | volume of gas collected = final volume of gas – initial volume of gas Record these values in Table 1.1. [1] | (vi) | State the effect of temperature on the rate of respiration in yeast cells. | | | | | |------|--|--|--|--|--| | | | | | | | | | [1] | | | | | (vii) The yeast suspension is stirred in step 2 to mix it. Suggest why this is important. [11] (b) A student repeats the procedure in (a) at five different temperatures. The student's results are shown in Table 1.2. Table 1.2 | temperature
/°C | volume of gas collected / cm ³ | |--------------------|---| | 5 | 2.0 | | 10 | 4.5 | | 15 | 8.5 | | 20 | 10.0 | | 25 | 10.0 | (i) On the grid, plot a graph of volume of gas collected (vertical axis) against temperature. [3] (ii) Draw the best-fit curve. [1] | (111) | (a)(vi). | |-------|--| | | Place a tick (✓) in the appropriate box. | | | support | | | do not support | | | explanation | | | | | | [1] | | (iv) | Suggest why the volume of gas collected by the student does not go above 10 cm ³ . | | | | | | [1] | | | [Total: 13] | Check that you have completed 1(a). | | | | G . | | |---|-----|--------|--|-----| | 2 | You | are | going to investigate the reaction of dilute hydrochloric acid with three solids, K , L and I | VI. | | | You | are | provided with the three solids, K , L and M . | | | | (a) | Pro | ocedure for solid K | | | | | ·
· | Put a spatula of K into a clean test-tube. Add approximately 3 cm depth of dilute hydrochloric acid to the test-tube. Gently swirl the test-tube and its contents. Leave the test-tube for about four minutes while you do parts (b) and (c). cord your observations of the contents of the test-tube after four minutes. | | | | | | | | | | (b) | Pro | ocedure for solid L | ι. | | | | • | Put a spatula of L into a clean test-tube. Add approximately 3 cm depth of dilute hydrochloric acid to the test-tube. | | | | | (i) | Record your observations. | | | | | | | | | | | | | | | | | | | [2 | (ii) Explain how your observations in (b)(i) show that solid L contains carbonate ions. # (c) Procedure for solid M - Put a piece of **M** into a clean test-tube. - Add approximately 3 cm depth of dilute hydrochloric acid to the test-tube. - Test the gas made with a glowing splint. | (i) | One observation is that the mixture fizzes. | |-------|---| | | Describe one other observation of the reaction in the test-tube. | | | | | | [1] | | (ii) | Describe the result of the gas test. | | | | | | [1] | | (iii) | Explain why it is not possible to use this gas test to identify the gas made in this reaction. | | | | | | [1] | | | [Total: 7] | Check that you have completed 2(a). - **3** Aqueous hydrogen peroxide is a colourless solution that decomposes to make water and oxygen gas. - Fig. 3.1 shows the word equation for the decomposition of hydrogen peroxide. Fig. 3.1 Manganese(IV) oxide powder is added to aqueous hydrogen peroxide to allow the decomposition to happen at room temperature. Plan an investigation to determine the relationship between the mass of manganese(IV) oxide powder added and the volume of oxygen gas made. You are provided with: - aqueous hydrogen peroxide - manganese(IV) oxide powder. You may use any common laboratory apparatus in your plan. # You are not required to do this investigation. Include in your plan: - the apparatus you will use - a brief description of the method, explaining any safety precautions you will take - what you will measure - · which variables you will keep constant - how you will process your results to draw a conclusion. You may include a labelled diagram. You may include a results table (you are not required to enter any readings in the table). |
 |
 | | |------|------|----| |
 |
 | | [7 | | You | are going to use a balancing method to determine the mass of a metre rule. | |-----|--| | (a) | Place the centre of the 30 g mass on the metre rule at the 15.0 cm mark. Use the tape to fix the mass in place. | | | The mass hides the markings on the metre rule. | | | Explain how you make sure that the centre of the 30 g mass is directly over the 15.0 cm mark | | | You may include a diagram in your answer. | (7) | **(b)** Place the metre rule on the pivot. Carefully slide the metre rule backwards and forwards on the pivot until the metre rule is balanced (or as close to balance as possible). Fig. 4.1 shows the metre rule at balance. Fig. 4.1 (not to scale) (i) Record the position of the pivot to the nearest 0.1 cm. (ii) Calculate the distance *u* between the centre of the 30 g mass and the position of the pivot. Use the equation shown. $$u = position of pivot - 15.0$$ $$u = \dots$$ cm [1] (iii) Use your answer to (b)(i) to calculate the distance *v* between the pivot and the 50.0 cm mark, the centre of the metre rule. Use the equation shown. $$v = 50.0 - position of pivot$$ (c) Calculate the mass m of the metre rule. | | Use | your answers to (b)(ii) and (b)(iii) and the equation shown. | |-----|------|---| | | | $m = \frac{30 u}{v}$ | | | Red | cord your answer to two significant figures. | | | | | | | | | | | | | | | | $m = \dots g [2]$ | | (d) | | gest one practical reason why it is difficult to get an accurate result using this balancing thod. | | | | | | | | [1] | | (e) | Rer | move the 30 g mass and tape from the metre rule. | | | (i) | Measure the weight W of the metre rule using the newton meter. | | | | | | | | | | | | W = N [1] | | | (ii) | Calculate the mass <i>m</i> of the metre rule. | | | | Use your answer to (e)(i) and the equation shown. | | | | $m = W \times 100$ | | | | | | | | | | | | | | | | <i>m</i> = g [1] | | | | | | | | | | (f) | Two values are equal, within the limits of experimental accuracy, if they are within 10% of each other. | |-----|---| | | Compare your values for m in (c) and (e)(ii). | | | Explain whether the two values of m are equal within the limits of experimental accuracy. | | | Include a calculation in your answer. | | | | | | | | | | | | | | | | | | explanation | | | [2] | [Total: 13] # **BLANK PAGE** # **BLANK PAGE** # NOTES FOR USE IN QUALITATIVE ANALYSIS ## **Tests for anions** | anion | test | test result | |---|---|--| | carbonate (CO ₃ ²⁻) | add dilute acid | effervescence, carbon dioxide produced | | chloride (C <i>l</i> ⁻) [in solution] | acidify with dilute nitric acid, then add aqueous silver nitrate | white ppt. | | nitrate (NO ₃ ⁻)
[in solution] | add aqueous sodium hydroxide, then aluminium foil; warm carefully | ammonia produced | | sulfate (SO ₄ ²⁻)
[in solution] | acidify, then add aqueous barium nitrate | white ppt. | # Tests for aqueous cations | cation | effect of aqueous sodium hydroxide | effect of aqueous ammonia | |--|---|---| | ammonium (NH ₄ ⁺) | ammonia produced on warming | - | | calcium (Ca ²⁺) | white ppt., insoluble in excess | no ppt., or very slight white ppt. | | copper(II) (Cu ²⁺) | light blue ppt., insoluble in excess | light blue ppt., soluble in excess, giving a dark blue solution | | iron(II) (Fe ²⁺) | green ppt., insoluble in excess | green ppt., insoluble in excess | | iron(III) (Fe ³⁺) | red-brown ppt., insoluble in excess | red-brown ppt., insoluble in excess | | zinc (Zn ²⁺) | white ppt., soluble in excess, giving a colourless solution | white ppt., soluble in excess, giving a colourless solution | # **Tests for gases** | gas | test and test result | |-----------------------------------|----------------------------------| | ammonia (NH ₃) | turns damp red litmus paper blue | | carbon dioxide (CO ₂) | turns limewater milky | | chlorine (Cl ₂) | bleaches damp litmus paper | | hydrogen (H ₂) | 'pops' with a lighted splint | | oxygen (O ₂) | relights a glowing splint | ### Flame tests for metal ions | metal ion | flame colour | |--------------------------------|--------------| | lithium (Li ⁺) | red | | sodium (Na ⁺) | yellow | | potassium (K ⁺) | lilac | | copper(II) (Cu ²⁺) | blue-green | Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series. Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.